On SSOR-like preconditioners for non-Hermitian positive definite matrices
نویسنده
چکیده
We construct, analyze and implement SSOR-like preconditioners for non-Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew-Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR-like iteration methods as well as the corresponding preconditioned GMRES iteration methods. Numerical implementations show that Krylov subspace iteration methods such as GMRES, when accelerated by the SSOR-like preconditioners, are efficient solvers for these classes of non-Hermitian positive definite linear systems.
منابع مشابه
The effectiveness of HYMLS in the Jacobi-Davidson method for stability analysis of fluid flow problems
We construct, analyze and implement SSOR-like preconditioners for non-Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew-Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR-like iteration methods as well as the cor...
متن کاملStair Matrices and Their Generalizations with Applications to Iterative Methods Ii: Iteration Arithmetic and Preconditionings
Iteration arithmetic is formally introduced based on iteration multiplication and αaddition which is a special multisplitting. This part focuses on construction of convergent splittings and approximate inverses for Hermitian positive definite matrices by applying stair matrices, their generalizations and iteration arithmetic. Analysis of the splittings and the approximate inverses is also prese...
متن کاملNew Krylov-subspace Solvers for Hermitian Positive Definite Matrices with Indefinite Preconditioners
Incomplete LDL∗ factorizations sometimes produce an inde nite preconditioner even when the input matrix is Hermitian positive de nite. The two most popular iterative solvers for Hermitian systems, MINRES and CG, cannot use such preconditioners; they require a positive de nite preconditioner. We present two new Krylov-subspace solvers, a variant of MINRES and a variant of CG, both of which can b...
متن کاملCirculant/Skewcirculant Matrices as Preconditioners for Hermitian Toeplitz Systems
We study the solutions of Hermitian positive definite Toeplitz systems Tnx = b by the preconditioned conjugate gradient method. For preconditioner An the convergence rate is known to be governed by the distribution of the eigenvalues of the preconditioned matrix A−1 n Tn . New properties of the circulant preconditioners introduced by Strang, R. Chan, T. Chan, Szegö/Grenander and Tyrtyshnikov ar...
متن کاملConvergence on successive over-relaxed iterative methods for non-Hermitian positive definite linear systems
*Correspondence: [email protected] 1School of Science, Xi’an Polytechnic University, Xi’an, Shaanxi 710048, China Full list of author information is available at the end of the article Abstract Some convergence conditions on successive over-relaxed (SOR) iterative method and symmetric SOR (SSOR) iterative method are proposed for non-Hermitian positive definite linear systems. Some examples are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 23 شماره
صفحات -
تاریخ انتشار 2016